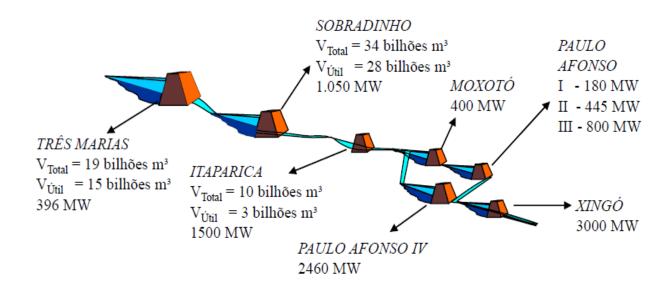


Resolução ANA nº 2.081/2017

Flexibilização da vazão defluente média mensal mínima e máxima a ser praticada pela UHE Xingó no período seco

CRISE HÍDRICA


Até o ano 2030, a população mundial alcançará 8.3 milhões de pessoas e a demanda por água crescerá 30% (ONU, 2016).

PRESSÕES GLOBAIS:

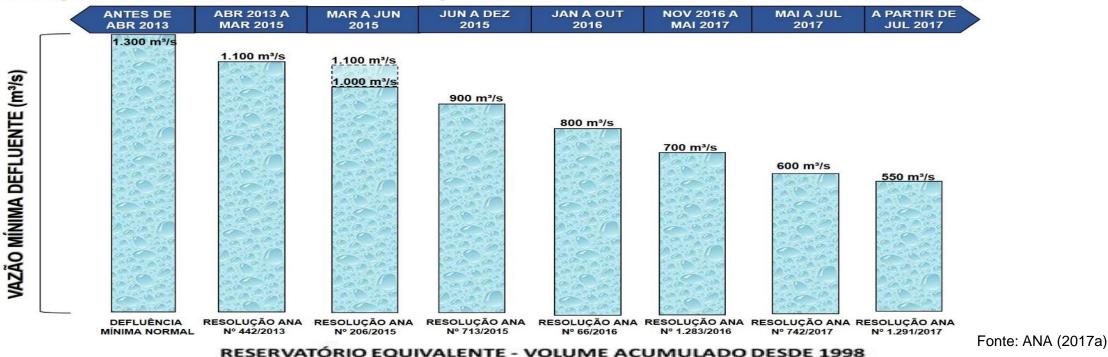
- Crescimento populacional
- Urbanização
- Alteração nos padrões de consumo
- Crescimento econômico
- Mudanças climáticas

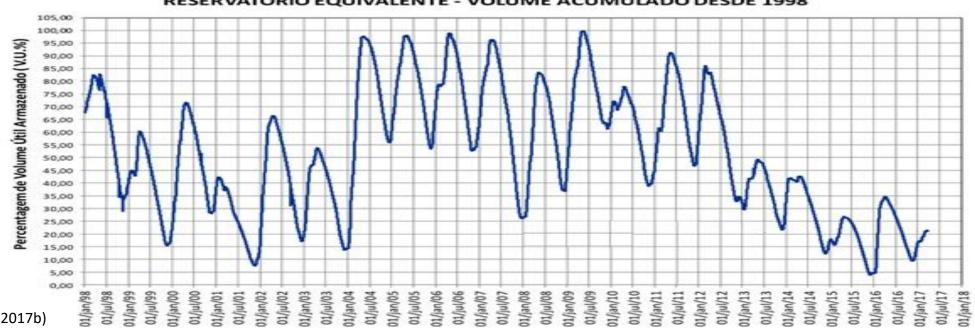
- A bacia do rio São Francisco abrange uma área de 7,5% do território brasileiro;
- 58% do seu território está inserido na região do semiárido.

Cascata dos principais reservatórios da calha do rio São Francisco, volume total, volume útil e potência instalada.

Fonte: ANA (2018a)

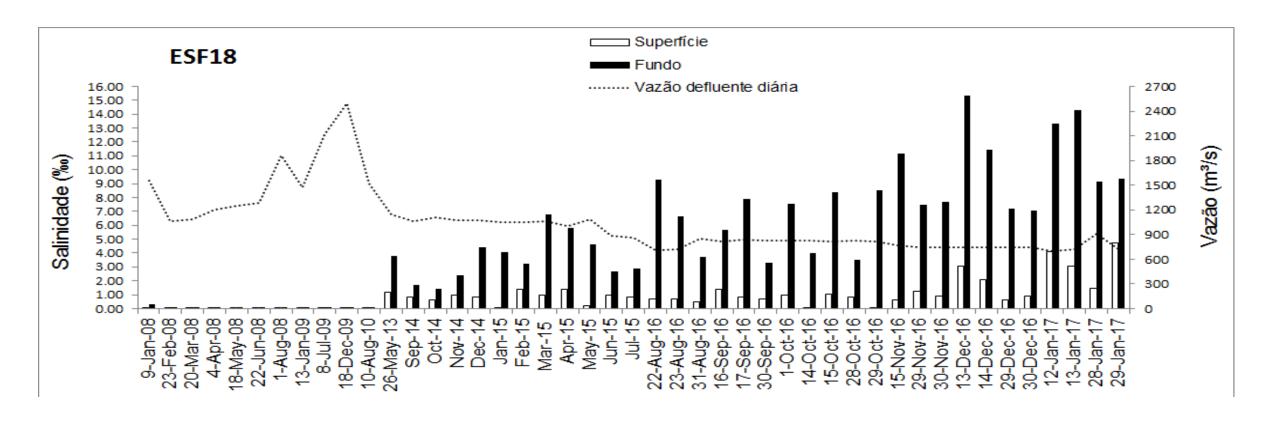
Principais usinas hidroelétricas e estações fluviométricas da bacia do Rio São Francisco.


Fonte: : ANA (2017a)

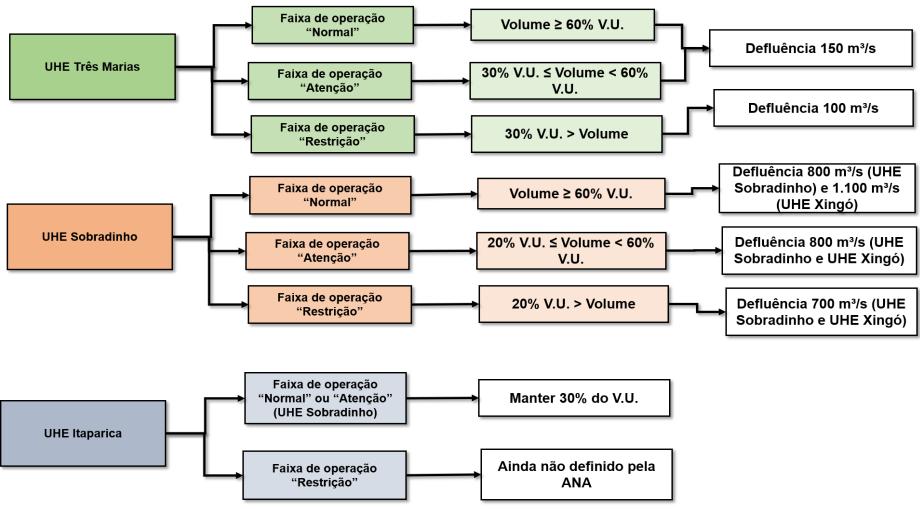


Fonte: Basto, 2018

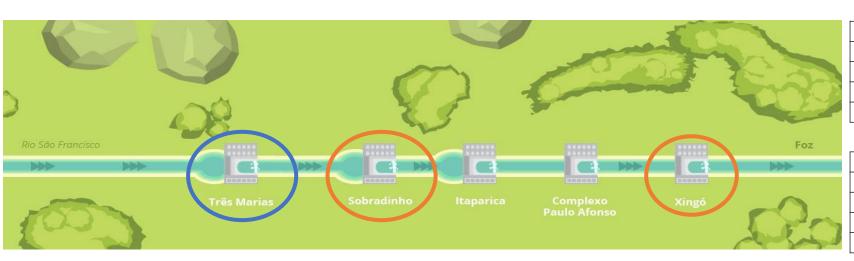
RESOLUÇÕES DA ANA QUE AUTORIZARAM A REDUÇÃO DE PATAMAR DE DEFLUÊNCIA DE SOBRADINHO E XINGÓ



RESERVATÓRIO EQUIVALENTE - VOLUME ACUMULADO DESDE 1998


Fonte: ANA (2017b)

Relação entre as vazões defluentes da barragem de Xingó e salinidade **na superfície e fundo**, Piaçabuçu (Alagoas), distante 9,3 Km da foz


Fonte: Fonseca et al., 2019, com base em dados disponibilizados pela Chesf

Verificação dos volumes simulados atendem às restrições operacionais estabelecidas pela Resolução nº 2.081, de 4 de dezembro de 2017.

Condições mínimas de restrição de vazão para os reservatórios, estabelecidas pela Resolução nº 2.081, de 4 de dezembro de 2017 (Agência Nacional de Águas, 2017).

RESOLUÇÃO ANA N.º 2.081/2017

Dados Reservatório Três Marias					
Vol. Máximo Maximorum (Hm³)	20.514				
Vol. Máximo Operativo (Hm³)	19.528				
Vol. Mínimo Operativo (Hm³)	4.250				
Vol. Útil (Hm³)	15.278				

Dados Reservatório Sobradinho				
Vol. Máximo Maximorum (Hm³)	38.537			
Vol. Máximo Operativo (Hm³)	34.116			
Vol. Mínimo Operativo (Hm³)	5.447			
Vol. Útil (Hm³)	28.669			

Faixas de operação Três Marias	Mínima Média Diária	Média Mensal	Máxima Média Mensal
Normal Volume útil ≥ 60%	150 m³/s	-	Não há restrições
Atenção 30% ≤ Volume útil < 60%	150 m³/s	-	Será estabelecida mensalmente
Restrição 30% > Volume útil	100 m³∕s.	Será estabelecida pelo ONS a partir de recomendação da ANA	-

Faixas de operação	Mínima Média Diária		Máxima Média Mensal	
Sobradinho	Sobradinho Xingó		Sobradinho	Xingó
Normal Volume útil ≥ 60%	800 m³/s 1.100 m³/s		Não há restrições	
			Período Úmido	
Atenção	800 m³∕s		Será estabelec	ida mensalmente
20% ≤ Volume útil < 60%			Perío	do Seco
			1.00	00 m³∕s
Restrição 20% > Volume útil	700 m³/s		-	900 m³/s

Condicionante

Art. 13. Durante o período úmido, quando o reservatório de Sobradinho estiver acumulando no mínimo 50% do seu volume útil (condicionante 1) e a média móvel dos três meses anteriores das vazões naturais afluentes a ele for superior a 80% da média móvel dos três meses anteriores das vazões médias mensais naturais de longo termo (condicionante 2)

Condicionante 1					
Volume do reservatório de Sobradinho acima de 50% do					
volume útil nos meses de fevereiro entre os anos de					
Anos	Volume Útil (%)				
2002	53,5%				
2004	52,8%				
2005	85,1%				
2006	82,3%				
2007	84,1%				
2009	71,8%				
2010	72,2%				
2011	53,8%				
2012	87,5%				
2014	52,7%				

Fonte:ONS,	2020.
------------	-------

Condicionante 2	Con	dici	ona	nte	2
-----------------	-----	------	-----	-----	---

Série de Vazões 1931 - 2020		_	Série	e de Vaz	ões 1993	3 - 2020			
Ano	Verificação 1		Verificaçã		_	Ano	V	erificaçã	ão 2
Allo	MLT	MMA	MMA/MLT	_	Allo	MLT	MMA	MMA/MLT	
2002	3402	2609	77%		2002	2936	2609	89%	
2004	3367	1896	56%		2004	2787	1896	68%	
2005	3353	2342	70%		2005	2750	2342	85%	
2006	3354	3411	102%		2006	2801	3411	122%	
2007	3365	4221	125%		2007	2899	4221	146%	
2009	3333	2886	87%		2009	2805	2886	103%	
2010	3328	2908	87%		2010	2812	2908	103%	
2011	3326	3179	96%		2011	2832	3179	112%	
2012	3330	3618	109%		2012	2872	3618	126%	
2014	3300	2388	72%		2014	2800	2388	85%	

MMA Média móvel dos três meses anteriores das vazões naturais afluentes

MLT Média móvel dos três meses anteriores das vazões médias mensais naturais de longo termo

Fonte dos dados: CHESF, 2020.

CENÁRIOS

	PULSO JANEIRO (m³/s)	PULSO FEVEREIRO (m³/s)
CENÁRIO 1	2000	2500
CENÁRIO 2	2000	3000
CENÁRIO 3	2500	3500

Observações

- A simulação dos cenários foi realizada considerando às vazões mensais;
- Nos demais meses, foi aplicada a regra da Resolução ANA nº 2081/2017;
- Período simulado: 2000 a 2018 (o ano de 1999 foi usado para aquecimento do modelo);
- Modelo utilizado: Water Evaluation And Planning System (WEAP);
- O projeto base utilizado foi estruturado no trabalho de Isabela Basto;
- A definição dos pulsos foi baseada nos estudos da rede de pesquisa Ecovazão.

Proposta Pulso – Rio São Francisco

- **1.Quantidade**/configuração de pulsos: **2** pulsos, com o menor primeiro (qualidade do sedimento e persistência da cheia)
- 2.Período indicado: janeiro e fevereiro (garantir sazonalidade natural)
- 3.Magnitude (média mensal)
 - Jan **2500** m³/s
 - Fev **3500** m³/s
- **4.Duração** permitir uma maior persistência da cheia para recuperar habitats e manter o alagamento das áreas marginais por um período mais longo, o suficiente para os jovens se desenvolverem e alcançarem o tamanho que permita o retorno para a calha do rio.

5. Monitoramento contínuo

O ONS submeteu à ANA, a seguinte proposta:

Rio de Janeiro, 24/05/2021

ASSUNTO: (ANA) Flexibilização da vazão defluente média mensal mínima e máxima a ser praticada pela UHE Xingó no período seco – Revisão Ref.: [1] Resolução ANA nº 2.081, de 04 de dezembro de 2017

Setembro vazão defluente mensal para 1.500 m/s
Outubro e Novembro vazão defluente mensal para 2500 m/s
Junho a julho a vazão defluente mínima para 800 m/s.

Resolução 81 da ANA de 14/06/2021 – autoriza a operação excepcional nos meses de junho, julho, setembro, outubro e novembro de 2021 - Art. 2º Permitir a troca de faixa de operação Normal para a de Atenção em junho e julho de 2021 e Art. 3º Permitir a prática de vazões máximas médias mensais de 1.500 m³/s setembro e de 2.500 m³/s em outubro e novembro de 2021.

§1º A operação excepcional prevista no caput será suspensa quando o reservatório de Sobradinho atingir volume útil inferior a 40%, passando a ser observadas as condições estabelecidas pela Resolução ANA Nº 2.081, de 4 de dezembro de 2017.

Sumário Executivo de Medida Provisória

Medida Provisória nº 1.055, de 28 de junho de 2021.

Publicação: DOU de 28 de junho de 2021 – Edição Extra.

Ementa: Institui a Câmara de Regras Excepcionais para Gestão Hidroenergética com o objetivo de estabelecer medidas emergenciais para a otimização do uso dos recursos hidroenergéticos e para o enfrentamento da atual situação de escassez hídrica, a fim de garantir a continuidade e a segurança do suprimento eletroenergético no País.

A CREG, que terá duração até 30 de dezembro de 2021, terá como atribuições: "definir diretrizes obrigatórias para, em caráter excepcional e temporário, estabelecer limites de uso, armazenamento e vazão das usinas hidrelétricas e eventuais medidas mitigadoras associadas"; homologar as deliberações do Comitê de Monitoramento do Setor Elétrico (CMSE)

A CREG poderá reduzir vazões de usinas hidrelétricas "desde que sejam iguais ou superiores às vazões que ocorreriam em condições naturais, caso não existissem barragens na bacia hidrográfica".

A CREG será integrada pelos Ministros de Estado de Minas e Energia, que a presidirá, da Economia, da Infraestrutura, da Agricultura, Pecuária e Abastecimento, do Meio Ambiente e do Desenvolvimento Regional.

O Presidente da CREG poderá praticar atos ad referendum do colegiado.

Obrigada!

yvonilde.medeiros@gmail.com Universidade Federal da Bahia - UFBA